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Summary

1

 

We assess the use of  simple, size-based matrix population models for projecting
population trends for six coniferous tree species in the Sierra Nevada, California. We
used demographic data from 16 673 trees in 15 permanent plots to create 17 separate
time-invariant, density-independent population projection models, and determined
differences between trends projected from initial surveys with a 5-year interval and
observed data during two subsequent 5-year time steps.

 

2

 

We detected departures from the assumptions of the matrix modelling approach in
terms of strong growth autocorrelations. We also found evidence of observation errors
for measurements of tree growth and, to a more limited degree, recruitment. Loglinear
analysis provided evidence of significant temporal variation in demographic rates for
only two of the 17 populations.
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Total population sizes were strongly predicted by model projections, although
population dynamics were dominated by carryover from the previous 5-year time
step (i.e. there were few cases of recruitment or death). Fractional changes to overall
population sizes were less well predicted. Compared with a null model and a simple
demographic model lacking size structure, matrix model projections were better able to
predict total population sizes, although the differences were not statistically significant.
Matrix model projections were also able to predict short-term rates of survival, growth
and recruitment. Mortality frequencies were not well predicted.
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Our results suggest that simple size-structured models can accurately project future
short-term changes for some tree populations. However, not all populations were well
predicted and these simple models would probably become more inaccurate over longer
projection intervals. The predictive ability of  these models would also be limited by
disturbance or other events that destabilize demographic rates.
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Introduction

 

Structured population models are basic tools for
analysing demographic data. An important, but con-
tentious, application of this method is projecting future
population behaviour from observed conditions.
Models can only project future population trends accu-
rately if  their structure and data quality are reliable
descriptors of the populations concerned. Data quality
issues have received considerable attention, particularly
in terms of  errors and biases in sampling (Ludwig

1999; Fieberg & Ellner 2000; Meir & Fagan 2000).
Adequate models may need to include complex or
data-intensive features, such as cryptic demographic
stages (Kalisz & McPeek 1992), periodic environments
(Beissinger 1995), ecological interactions (e.g. density
dependence, meta-population dynamics) (Alvarez-
Buylla 1994; Lindenmayer 

 

et al

 

. 2000) and temporal/
spatial fluctuations in demographic rates [Horvitz &
Schemske 1995 (but see Caswell 2001); Bierzychudek
1999]. More fundamentally, Pfister & Stevens (2003)
have demonstrated by simulation that species with
strong growth autocorrelations (i.e. growth rates that
are non-randomly distributed among individuals over
time) violate the assumptions of most size-structured
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population models, which may result in biased
projections.

Trees are some of the best studied long-lived peren-
nial plants, but possess life history traits that impede
the creation of structured population models. Demo-
graphic processes occur slowly for most tree species,
requiring large sample sizes and long observation
intervals to estimate vital rates. It is also unclear how
tree size affects individual fates. It is generally assumed
that individual tree reproduction and growth tend to be
positively size-dependent (Harper 1977; Pacala 

 

et al

 

.
1994), whereas mortality probabilities decrease with
tree size (Hawkes 2000). However, empirical evidence
questions whether growth and mortality are strongly
size-dependent (Clark & Clark 1999; our unpublished
data). Demographic rates are also thought to be shaped
by patch scale interactions, which could result in strong
growth autocorrelations. The use of individual-based
forest ‘gap’ models (Bugmann 2001) is an attempt
to account explicitly for localized environmental dif-
ferences. However, demographic rates for tree popu-
lations are likely to change slowly in the absence of
disturbance, suggesting that it may be possible to create
accurate projections, and several researchers have
used size-structured population models to project
demographic trends of  trees (Olmsted & Alvarez-
Buylla 1995; Schwartz 

 

et al

 

. 2000; Kohira & Ninomiya
2003; Kwit 

 

et al

 

. 2004; Lytle & Merritt 2004). The
meta-analytical approach of Brook 

 

et al

 

. (2000) has
not been attempted for plants, and it is unclear whether
simple tree population models are useful for predicting
demographic trends.

We assess the accuracy of  projections from 17 sep-
arate simple, deterministic, size-structured population
models using long-term demographic data for six
coniferous tree species at several sites in the Sierra
Nevada, California. We record demographic changes
between the beginning and end of an initial 5-year period
and use these data to determine differences between
projected and observed population trends in subsequent
5-year time steps. We address the question of whether
simple matrix models can be used to describe these
populations and if  there are significant or systematic
differences between the projected and actual future
demographic trends in our tree populations over short
periods of time. If  short-term projections fail, longer-
term projections are unlikely to be successful.

 

Methods

 

Permanent study plots were established in the con-
iferous forest belts of Sequoia and Yosemite National
Parks in the Sierra Nevada of  California (Table 1).
The sites have never been logged. The climate is
mediterranean, with hot, dry summers and cool, wet
winters, with about half  of  the annual precipitation
falling as snow (Stephenson 1988). Average January
and July air temperatures are roughly 2 

 

°

 

C and 19 

 

°

 

C,
respectively (Major 1977). Frequent fires characterized

Sierran forests prior to European settlement, but the
areas containing the study plots have not burned since
the late 1800s (Swetnam 

 

et al

 

. 1992).
In each plot all trees 

 

≥

 

 1.37 m in height were tagged,
mapped, measured for diameter and identified to
species level. We performed mortality assessments
annually starting at the time the plots were established.
Trees were recorded as dead only if  they showed com-
plete needle browning or loss. We continued to track
dead trees for as long as we were able to relocate the
stems to ensure a correct judgement of tree death. We
took measurements of live tree stem diameter at breast
height (d.b.h. 1.37 m), with breast height marked with
a nail for precise relocation. We measured tree diame-
ters typically at 5-year intervals, and calculated radial
growth from these repeated measurements. During
the measurement years new trees (ingrowth reaching
1.37 m) were recorded as recruitment. Analysis was
limited to the numerically dominant species within each
forest type, which included 

 

Abies concolor

 

 (Gordon &
Glend.) Lindley, 

 

A. magnifica

 

 s.l., 

 

Calocedrus decurrens

 

(Torrey) Florin, 

 

Pinus jeffreyi

 

 Grev. & Balf., 

 

P. lambertiana

 

Doug. and 

 

P. ponderosa

 

 Laws. 

 

Abies

 

 spp. and 

 

C. decurrens

 

are shade tolerant whereas the 

 

Pinus

 

 species are
moderately to robustly shade intolerant (Minore 1979).
We were interested in temporal patterns in the data, so
we excluded individual trees that had missing data
during any measurement year. This resulted in the
removal of  100 trees, leaving 16 673 trees for demo-
graphic analysis. Three time steps (0–5, 5–10 and
10–15 years) were analysed.

We organized demographic data for the first 5-year
interval as time-invariant, density-independent, size-
structured population models with 5-year time steps.
We created five stem diameter classes (0.0–5.0, 5.1–10.0,
10.1–20.0, 20.1–40.0, > 40.0 cm d.b.h.), which roughly
correspond to canopy position (i.e. sapling, understory,
intermediate, co-dominant, dominant) (N. Stephenson
unpublished data). No backward transitions or
skipping size classes were permitted. Frequencies of
mortality and growth to larger size classes were taken
directly from field observations. We did not measure
the fecundity of individual trees. Lacking fecundity data,
we estimated reproductive output from recruitment of
new trees (as defined above), with the assumption that
only trees > 40 cm d.b.h. contributed to recruitment.
This relatively crude assumption is based on the results
of Fowells & Schubert (1956), who recorded only small
amounts of cone production for trees < 40 cm d.b.h.
for 

 

A. concolor

 

, 

 

P. lambertiana

 

 and 

 

P. ponderosa

 

.
Size-specific reproductive data were not available
for 

 

A. magnifica

 

, 

 

C. decurrens

 

 and 

 

P. jeffreyi

 

, but the
majority of cone production occurs in the largest trees
(Jenkinson 1990; our personal observations). Seeds are
not stored in long-term seedbanks, and none of these
species reproduces vegetatively. The 5-year resolution
of our growth and recruitment data provides an adequate
observation length to measure demographic rates
for these trees. Population projections were likewise
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Table 1

 

Characteristics of  permanent forest plots. Species names presented in bold were used for analysis

 

 

 

 

Population name Plot name Measurement years Elev. (m) Plot size (ha) Stem count* Species composition†

Hodgedon Meadows YOHOPIPO 1991, 1996, 2001 1500 1.0 2978

 

ABCO

 

 35%; 

 

CADE

 

 32%; 

 

PILA

 

 26%; 

 

PIPO

 

 5%; PSME 1%; QUKE 1%
Crane Creek 1993, 1998, 2003 1637 1.0 1752

 

ABCO

 

 44%; 

 

CADE

 

 29%; 

 

PILA

 

 19%; 

 

PIPO

 

 6%; QUKE 2%

Crystal Road BBBPIPO 1992, 1997, 2002 1609 1.0 1273

 

CADE

 

 55%; QUKE 24%; 

 

ABCO

 

 12%; 

 

PILA

 

 5%; PIPO 4%; QUCH 1%
CCRPIPO 1991, 1996, 2001 1637 1.1 2102

 

ABCO

 

 46%; 

 

CADE

 

 30%; QUKE 15%; 

 

PILA

 

 5%; PIPO 4%

Suwanee Creek SuwCreek 1983, 1988, 1994, 1999 2033 1.4 1026

 

ABCO

 

 55%; 

 

CADE

 

 20%; 

 

PILA

 

 20%; ABMA 4%; QUKE 1%
SuwABCO 1983, 1988, 1994, 1999 2035 0.9 680

 

ABCO

 

 59%; 

 

CADE

 

 28%; 

 

PILA

 

 9%; ABMA 4%
SuwPILA 1983, 1988, 1994, 1999 2059 1.1 765

 

ABCO

 

 68%; 

 

PILA

 

 21%; 

 

CADE

 

 9%; QUKE 1%

SEGI Conifer LMCC 1982, 1988, 1994, 1999 2128 2.0 672

 

ABCO

 

 71%; 

 

ABMA

 

 20%; SEGI 7%; PILA 2%
LogSEGI 1983, 1988, 1994, 1999 2170 2.5 1055

 

ABCO

 

 76%; 

 

ABMA

 

 15%; PILA 5%; SEGI 3%

Log Creek LogABCO 1987, 1992, 1997, 2002 2207 1.1 458

 

ABCO

 

 75%; 

 

ABMA

 

 22%; PILA 2%; SEGI 1%
LogPILA 1987, 1992, 1997, 2002 2210 1.0 434

 

ABCO

 

 90%; PILA 6%; CADE 2%; PIJE 1%; QUKE 1%

Xeric Conifer FrPIJE 1983, 1988, 1994, 1999 2106 1.0 178

 

PIJE

 

 79%; QUKE 9%; ABCO 7%; PILA 2%; CADE 2%; PIMO 1%
LogPIJE 1985, 1990, 1995, 2000 2405 1.0 121 ABCO 59%; 

 

PIJE

 

 39%; ABMA 2%; PILA 1%

Tuolumne River SftrABMA 1992, 1997, 2002 2484 1.0 1631

 

ABMA

 

 100%

Panther Gap PgABMA 1992, 1997, 2002 2576 1.0 765

 

ABMA

 

 100%

*Stems defined as individuals 

 

≥

 

 1.37 m tall at time of plot establishment.
†Species composition of  all stems at time of plot establishment. Percentages may not add to 100 due to rounding. ABCO = 

 

Abies concolor

 

, ABMA = 

 

A. magnifica

 

, CADE = 

 

Calocedrus decurrens

 

, PIJE = 

 

Pinus 
jeffreyi

 

, PILA = 

 

P. lambertiana

 

, PIPO = 

 

P. ponderosa

 

, PIMO = 

 

P. monticola

 

, PSME = 

 

Pseudotsuga menziesii

 

, QUCH = 

 

Quercus chrysolepis

 

, QUKE = 

 

Q. kelloggii

 

, SEGI = 

 

Sequoiadendron giganteum

 

.
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calculated at 5-year intervals. Occasionally the growth
and reproduction measurements were taken on a 6-
year interval; we standardized these data to a 5-year
interval to calculate transition probabilities.

In most cases we grouped plots that shared geo-
graphical proximity and similar elevations to estimate
transition probabilities (distance among grouped
plots, average = 2.9 km, range = 0–10.2 km), because
Stephenson & van Mantgem (in press) show that plots
with similar elevations share similar demographic
rates. We considered individual plots, or plot groups
where we could create independent models, to be
populations (Table 1). For some populations there were
no observations of  certain stage transitions, despite
the fact that, although rare, they must occur (typically
mortality for trees > 40 cm d.b.h.). We left these prob-
abilities at their observed rate of 0, although this might
translate into inaccurate projections at longer time
intervals. The size-structured projection models took
the form 

 

n

 

(

 

t

 

 + 1) = 

 

An

 

(

 

t

 

), where 

 

n

 

(

 

t

 

) is a vector of the
stage abundances at time 

 

t

 

, and 

 

A

 

 is the matrix containing
transition probabilities that describe the contribution
of each stage to the population at the next time step.
Population matrices and asymptotic growth rates (

 

λ

 

)
for the initial 5-year interval are given in Appendix 1,
which is available as supplementary material.

We checked for observation errors and violations of
the assumptions of matrix models. The 5-year interval
means that we may have missed newly recruited trees
that grew to 1.37 m and died before being counted
(hereafter called ‘ghost mortalities’). However, we
recorded recruitment annually from 1999, and found
little evidence of  widespread ghost mortalities (pro-
portion of recruits from 1999 to 2003 that died between
2000 and 2003: 

 

A. concolor

 

 2%, 

 

A. magnifica

 

 2%,

 

C. decurrens

 

 1%, 

 

P. jeffreyi

 

 0%, 

 

P. lambertiana

 

 7%,

 

P. ponderosa

 

 0%).
We followed the methods of Pfister & Stevens (2002)

to measure growth autocorrelations. We evaluated
size-dependent growth by assessing the effect of tree
diameter on subsequent radial growth with linear
regression using a quadratic model during two 5-year
intervals, and compared the residuals from the two
time intervals. Our quadratic model was 

 

G

 

t

 

+1

 

 = 

 

C

 

 +

 

α

 

1

 

 · DBH

 

t

 

 + 

 

α

 

2

 

 · , where 

 

G

 

t

 

+1

 

 is the radial growth
rate at the second time step and DBH

 

t

 

 is the stem
diameter at the first time step. Growth autocorrelations
were considered to be present if  there was a positive and
significant relationship between the two. To compare
our results directly against the findings of  Pfister &
Stevens (2003) we considered, simultaneously, the effects
on growth of previous growth and size, using multiple
regression (

 

G

 

t

 

+1

 

 = 

 

C

 

 + 

 

α 

 

· DBH

 

t

 

 + 

 

β 

 

·

 

 G

 

t

 

, correspond-
ing to equation 1 in Pfister & Stevens 2002), for stems
< 40 cm d.b.h. where we do not find a curvilinear
response between stem diameter and radial growth
(see Fig. 1).

Our growth measurements yielded negative growth
rates for 8.1% of trees on average over the three 5-year

intervals analysed. Negative growth rates probably
arose from measurement error, transcription error or
bark loss between measurements. Trees with negative
growth rates were retained to avoid biasing our growth
analyses in favour of trees with growth rate errors in the
positive direction, which we had no way of identifying.
However, we wished to remove outliers with exception-
ally large positive and negative growth rates, which had
a disproportionate influence on growth statistics. Data
from cores and complete cross-sections from about 400
trees of all species in the montane forests of Sequoia
National Park (N. Stephenson unpublished data)
indicated that the actual maximum radial growth rate
for a tree was unlikely to be > 8 mm yr

 

−

 

1

 

. We chose
1 mm yr

 

−

 

1

 

 as the largest acceptable error in growth
rate, and because actual minimum growth rate could
not be < 0 mm yr

 

−

 

1

 

, we used trees with growth rates of

 

−

 

1 mm yr

 

−

 

1

 

 to 9 mm yr

 

−

 

1

 

 for our growth analyses. An
average of 3.0% of trees during each 5-year interval fell
outside this range. These trees were dropped from the
analysis of  size-dependent growth and growth auto-
correlations, leaving 11 591 individual trees for the
comparison of years 0–5 and 5–10, and 3863 individual
trees for the years 5–10 and 10–15. Trees with extreme
growth rates were not excluded from building the
population matrices.

We used loglinear analyses to detect temporal and
spatial variations in transition probabilities for our
populations (Horvitz & Schemske 1995; Caswell 2001).
Our loglinear analyses considered the dependence
of an individual’s fate (

 

F

 

, five size classes at 

 

t

 

 + 1 and
death) on the independent variables of  initial state
(

 

S

 

, the five size classes at 

 

t

 

), time (T, years 0–5, 5–10)
and locations (L, spatial differences among popula-
tions where we had multiple populations of the same
species). The null model contains the interaction of the
explanatory variables and assumes that the size class
variables influence fate (STL, SF ). Additional models
consider the interactions between fate and time (STL,
SFT ), the interactions between fate and location (STL,
SFL), and the additive effects of the time and location
interactions (STL, SFT, SFL). These models are com-
pared against the saturated model, which considers all
possible interactions (SFTL). We selected the best
model for each species using the Akaike information
criterion (AIC), which is a ranking procedure defined
as AIC = G 2 − 2(d.f.), where G 2 is the goodness-of-fit
likelihood ratio statistic and d.f. is the degrees of free-
dom (Caswell 2001). The likelihood of a given model
increases as more parameters are added, but the
decreasing negative log likelihood is offset by increases
in d.f. The best model has a relatively small AIC owing
to the combination of  a relatively large likelihood
and a parsimoniously small number of parameters.
Competing models are compared by scaling their AIC
values against the best model with the lowest AIC
value. The rescaled AIC values are written as ∆AIC.
Models with ∆AIC = 2 have substantial support, and
fit almost equally well as the best model (Burnham &

DBHt
2
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Anderson 1998). We also tested for temporal variations
alone for individual populations by comparing the
saturated model SFT against the model FS, ST, using
likelihood ratio statistics to determine significance.

Numerical projections were calculated by multiply-
ing the observed population stage abundances with the
observed transition probabilities from the years. These
projections were used to calculate expected total
population sizes, and the summed frequencies of sur-
vival, growth, recruitment and death for all size classes
during the years 5–10 and 10–15. A property of matrix
models is that projection results are expected to
fluctuate until a stable stage distribution is reached. We
assessed the influence of  the initial observed stage
distribution on our projections by calculating their dis-
tance from the stable stage distribution using Keyfitz’s
∆, defined as

where x and w are the vectors of the observed and the
stable stage distributions scaled to 1.0 (Caswell 2001).
Values for Keyfitz’s ∆ range between 1 and 0, with
smaller values being obtained as the observed and
stable stage distributions become more similar. We
combined the projection results from all of the models
and compared them against the observed population
data using linear regression. We also compared the
matrix model results against two competing models: a
null model of no population change [N(t) ≡ N(0)], and
a simple population model ignoring size structure [at a
5-year interval, N(t + 5) = (b − d )N(t), where b and d
are recruitment and death rates during the first 5-year
interval]. Model results were compared using an error
sum of squares [error SS = Σ(Xobserved − Xpredicted)

2],
where Xobserved is the observed total population size and
Xpredicted is the total population size predicted by a given
model for an individual population. We tested if  error
SSmodel 1 − error SSmodel 2 = 0 with a paired t-test using
square root transformations to normalize the data. We
calculated matrix model projections using PopTools,
version 2.5 (Hood 2003). We conducted statistical tests
with , version 10.2 (SYSTAT 2002).

Results

We found evidence of  size-dependent growth and
growth autocorrelations for the years 0–5 and 5–10
(Figs 1 & 2). Multiple regressions of size and growth
also generally found these variables to predict future
growth for stems < 40 cm d.b.h. (α average and range =
0.025, 0–0.039, β average and range = 0.537, 0.414–
0.663). We found similar results for the years 5–10 and
10–15, where regressions for size-dependent growth
were statistically significant (P < 0.001) for all species,
and the variation in growth explained by size for the
significant relationships averaged 12%. Previous growth
explained 34% of the variance on average when size–
growth residuals were examined and coefficients were

positive and statistically significant (P < 0.001). Future
growth was also related to past growth and stem size
when considered simultaneously during this time
interval for trees < 40 cm d.b.h. (α average and range =
0.016, 0–0.032, β average and range = 0.692, 0.560–
0.763).

Loglinear tests found that populations of the same
species were more variable across locations than time
(Table 2). An exception to this was C. decurrens, which
showed strong variation in demographic rates over
time but not locations. We conducted the same tests
using the two most recent observation intervals for
each population to minimize potential effects of inter-
annual environmental differences, but found nearly
identical results. For individual populations loglinear
analysis provided evidence of  significant temporal
variability in demographic rates for only two of  17
populations (FS, ST: Hodgedon Meadows A. concolor
G2 = 38.0, d.f. = 25, P = 0.046, Crystal Road C. decurrens
G2 = 101.8, d.f. = 25, P < 0.001). Variation in small
tree (0.1–5.0 cm d.b.h.) mortalities appeared to be
responsible for changes to these populations. The
initial observed stage distributions were generally close
to the stable stage distributions (minimum, maximum
and average Keyfitz’s ∆ ± SD = 0.054, 0.651, 0.229 ±
0.186). The low degree of  temporal variation and
similarities among observed and stable population
distributions appeared to allow time-invariant model
projections to follow observed total population sizes
closely for both observation intervals. The projected

∆( , )   |    |x w = −∑1
2

x wi i
i

Table 2 Loglinear analyses assessing the effects of time (T,
years 0–5, 5–10) and location (L) on individual fate (F ), given
the initial stage class (S )
 

 

Model G 2 d.f. P AIC ∆AIC

Abies concolor
STL, SF 385.02 225 <0.0001 −65.0 51.7
STL, SFT 353.45 200 <0.0001 −46.6 70.2
STL, SFL 133.28 125 0.2896 −116.7 0.0
STL, SFT, SFL 99.64 100 0.4914 −100.4 16.4
SFTL 0 0 0.0 116.7

A. magnifica
STL, SF 358.24 175 <0.0001 8.2 140.6
STL, SFT 235.63 150 <0.0001 −64.4 68.0
STL, SFL 67.68 100 0.9945 −132.3 0.0
STL, SFT, SFL 38.71 75 0.9998 −111.3 21.0
SFTL 0 0 0.0 132.3

Calocedrus decurrens
STL, SF 230.25 125 <0.0001 −19.8 26.4
STL, SFT 153.88 100 0.0004 −46.1 0.0
STL, SFL 111.04 75 0.0043 −39.0 7.2
STL, SFT, SFL 73.68 50 0.0163 −26.3 19.8
SFTL 0 0 0.0 46.1

Pinus lambertiana
STL, SF 182.09 125 <0.0001 −67.9 −3.8
STL, SFT 121.22 100 0.0732 −78.8 −14.7
STL, SFL 85.89 75 0.1832 −64.1 0.0
STL, SFT, SFL 39.66 50 0.8525 −60.3 3.8
SFTL 0 0 0.0 64.1
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stage distributions were close to the observed distribu-
tions, with significant differences found only in the
Crystal Road C. decurrens population at year 10
(G 2 = 27.3, d.f. = 4, P < 0.001) where recruitment was
greater than expected, and the Log Creek A. magnifica
population at year 15 (G 2 = 12.4, d.f. = 4, P = 0.015)
where deaths were more infrequent than expected.

Combining the model results, we found the amount
of variation that the regression models of total popu-
lations could explain was high (year 10, R2 = 0.988,
P < 0.0001; year 15, R2 = 0.989, P < 0.0001). There
were, however, only low levels of  recruitment and
mortality so the total population sizes were strongly
correlated among time steps. Fractional changes to total
population sizes from year 5 to years 10 and 15 show

that most projections models account for the observed
changes, but with notable exceptions (Fig. 3). Whereas
the regression model results were non-significant (year
10, P = 0.153; year 15, P = 0.734), removal of the Log
Creek A. magnifica population allowed the combined
model results to follow observed trends more closely
(year 10, R2 = 0.455, P = 0.004, intercept 95% CI =
−1.08 to 0.50, slope 95% CI = 0.48–2.09; year 15,
R2 = 0.577, P = 0.048, intercept 95% CI = −2.12 to
0.91, slope 95% CI = 0.03–3.11).

Alternative models were also able to predict total
population sizes due to the large effect of population
carryover. Comparing the error SS of the models showed
a closer agreement between the matrix models vs. the
other population models, although these differences

Fig. 1 Size-dependent growth for the years 0–5. We limited our regressions to trees with growth rates of −1 to 9 mm yr−1 (see
Methods), bounded by dashed lines, to calculate the influence of stem diameter on radial growth.
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were not statistically significant [years 5–10, mean
square error (MSE)Null = 7273, MSEUnstructured = 4462,
MSEMatrix = 3860, paired t ≥ 0.16, d.f. = 16, P ≥ 0.09;
years 10–15, MSENull = 5839, MSEUnstructured = 3720,
MSEMatrix = 3456, paired t ≥ 0.01, d.f. = 7, P ≥ 0.73].
Regression models of  fractional changes to total
population sizes also showed poorer fits for the null
and unstructured models compared with the matrix
models.

There was general agreement among matrix model
projections and the observed frequencies of survival,
growth and recruitment for the interval 5–10 years
(Fig. 4). Death rates were not well predicted during this
observation interval. The 95% confidence intervals for

the intercept and slope parameters overlapped 0.0 and
1.0, respectively, for the regression models of survival
and recruitment. The Log Creek A. magnifica had a
higher than expected frequency of growth, which resulted
in model misspecifications (intercept 95% CI = 0.005–
0.057, slope 95% CI = 0.251–0.881). Removal of this
observation resulted in intercept and slope parameters
overlapping 0.0 and 1.0, respectively. Regressions of
matrix model predictions of demographic rates were
not statistically significant for the interval 10–15 years,
although the survival, growth and recruitment coefficients
for the intercept were close to zero (range 0.038–0.259),
and the slope coefficients were positive (range 0.115–
0.710). Similar results were obtained for years 5–10 and

Fig. 2 Growth autocorrelations for the years 0–5 and 5–10. The range of radial growth rates used to calculate temporal
correlations in growth was limited to −1 to 9 mm yr−1 (see Methods).
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10–15 using the unstructured model to predict rates of
survival, recruitment and death.

Discussion

Our results indicate that simple size-structured models
were generally useful for predicting total population
sizes and some demographic rates over short time
horizons for the tree species we considered. We found
evidence of  observation errors for the growth and
recruitment data (i.e. negative growth rates and ghost
mortalities). The mortality data probably contained an
inconsequential amount of observation error, as tree
death is easy to detect and was rechecked annually. We
detected violations of the assumptions of structured
population models, especially with respect to growth
autocorrelations. The simulation results of Pfister &
Stevens (2003) indicate that growth autocorrelations
should have a large effect on matrix projections only
when coupled with strong positive size-dependent
growth (i.e. α = 0.03 and β = 0.8), which could be
problematic for our projections. However, errors asso-
ciated with growth autocorrelations become large only
when compounded over multiple projection times, but
should not have had a large effect on our results given
the few time steps we considered. Inaccurate growth

frequency estimates over short time frames may not be
a critical problem for analysis of trees. Elasticity results
for our models (not presented) and for other long-lived
perennial species (Silvertown et al. 1996) point to
survivorship of large individuals as the critical deter-
minant of population change.

Rates of demographic change were very low (i.e. few
trees grew, recruited or died), resulting in population
dynamics that were dominated by carryover from the
previous time step. Thus, total population sizes were
strongly predicted by the matrix models, but we found
significant errors for some populations when we
considered fractional changes to total population size.
A particular problem was the Log Creek A. magnifica
population, for which high death rates and low growth
rates during the first 5-year interval were not main-
tained in the subsequent 5-year time steps. The reasons
for this spike in mortality are not clear, although many
of the dead trees were spatially clustered, suggesting a
centre of infection by Annosus root rot (Heterobasidion
annosum) (Laake 1990). The Suwanee Creek P. lamber-
tiana population was also poorly predicted because of
an increasing frequency of mortality caused by the
ongoing effects of  an introduced pathogen (van
Mantgem et al. 2004). Size-structured models provided
only marginal improvements in predictive accuracy
compared with a null model and an unstructured
population model. Furthermore, we found the influence
of individual tree size on growth to be weak, whereas
other analyses have shown tree size to be a poor pre-
dictor of survivorship in our stands (our unpublished
data). Although seed production is correlated to tree
size (Fowells & Schubert 1956), the rate of  recruit-
ment is likely to be heavily influenced by stand con-
ditions. The degree to which recruitment is limited
by seed input vs. site availability is not known for the
Sierra Nevada, although additional data suggest that
recruitment is not seed limited at our sites (P.J. van
Mantgem et al. unpublished data). Although short-
term projections were only slightly improved by
including size, errors caused by not including size will
be compounded over time, and longer term projections
may show the inclusion of  size to be increasingly
important.

Spatial variance among populations appeared to be
generally more important than temporal differences,
with the exception of C. decurrens. Like other studies
of herbaceous plant populations (e.g. Bierzychudek
1999), these results imply that it may be difficult to gen-
eralize the results of our population models to different
sites. The Sierra Nevada is, however, topographically
complex and environmental conditions are determined
by a steep elevational gradient (Stephenson 1988).
Elevation appears to be strongly correlated with
demographic rates in our populations (Stephenson &
van Mantgem in press), so it may be that demographic
models of tree populations could be applied to novel
populations where more uniform environmental con-
ditions are found.

Fig. 3 Projected vs. observed fractional change in total
population sizes from year 5 to year 10 (n = 17) and year 15
(n = 8). The solid line at 45° indicates perfect agreement
between projected and observed fractional population sizes.
Note different scales are used for years 10 and 15.
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Our time-invariant approach hinged on the temporal
stability of  the demographic rates. Loglinear tests
demonstrated that very few populations had significant
temporal variation in demographic rates, although
fractional changes were sometimes highly variable (e.g.
Log Creek A. magnifica population). One might expect
that the low magnitude of  temporal demographic

variability might apply to other forest tree species, for
which large individuals would be buffered against
small changes in environmental conditions. However,
this expectation may not hold for all long-lived plants,
or even all size classes of trees. For example, the small
size of seedlings (individuals < 1.37 m in height) may
result in their showing greater variation in growth

Fig. 4 Projected vs. observed vital rates for years 5–10 (n = 17) and 10–15 (n = 8). Vital rates were calculated as the fraction of
individuals of the total population that experienced a particular fate. The solid line at 45° indicates perfect agreement between
projected and observed fractional composition of the population. Note different scales are used for Survival.
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and survivorship rates in response to environmental
changes. Likewise, density-dependent influences may
be most relevant for seedlings (Silva Matos et al. 1999).
We emphasize that the projection results considered
here do not account for future events that could de-
stabilize demographic rates. For example, prescribed fire
has altered demographic rates for other populations in
our forests (van Mantgem et al. 2004). Vital rates are
also likely to change over time due to non-catastrophic
fluctuations in environmental conditions (e.g. changes
in stand densities). Accurately forecasting longer-term
(e.g. > 25 years) population trends will almost certainly
require additional data and model forms that can
account for disturbance, environmental stochasticity
and density dependence.

The matrix models were generally able to predict
vital rates for years 5–10, although at years 10–15 the
predictive ability was poorer. Model misspecifications
along with small sample sizes could account for the
results at years 10–15. The models did not estimate all
vital rates equally well. Survival was by far the most
common fate for individual trees, so it should not be
surprising that our models were able to project high
rates of survival accurately. Frequencies of growth and
recruitment generally followed projected patterns, while
death rates were more prone to errors. Tree growth and
recruitment should be at least partially governed by
canopy conditions, which is not likely to change dras-
tically over short time frames in the absence of distur-
bance. Death rates could be influenced by longer-term
environmental variations (Bigler & Bugmann 2004), so
perhaps with longer observation intervals we could
improve our ability to predict this rate. Alternatively,
mortality may be best indicated by individual attributes
other than size (Waring 1987). If  true, information
relevant to tree death could be difficult to capture in a
traditional matrix modelling approach.
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